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Abstract 
Managing and harnessing big data is increasingly being reported as an approach to generate 

business value, optimize decision-making, and achieve competitive advantage. There is strong 

evidence that research on big data has gained significant attention from both the academic 

community and analytics community. To date, research has largely focused on the technical 

aspects of big data and its applications in specific contexts, but with limited attention given to 

the underlying process. Yet, it is well accepted that understanding the processes required to 

leverage big data is a critical factor to realize the claimed benefits of big data. We address this 

knowledge deficit by designing a process framework to guide novice users to effectively apply 

social network analysis and improve the outputs of big data research projects. The framework 

is the artifact that emerged after applying the principles of design science research. The artifact 

was validated by a social network analysis of credit networks in India.  

 
1. Introduction  
 
There has been a contagious enthusiasm by academics and practitioners surrounding the notion 

of ‘big data’ and how it will revolutionize decision-making (Modgil et al., 2021; Choi et al., 

2018; Fossa Wamba et al., 2017). To facilitate data-driven decision making, organizations need 

to invest in big data initiatives (Grover et al., 2018) to develop efficient and effective processes 

that will translate big data into meaningful insights (Davenport, 2018). At the same time, 

concerns are being raised that investing in big data initiatives does not necessarily lead to more 

effective decision making (Hirschheim, 2021; Ghasemaghaei et al., 2018; Dennehy et al., 

2021). Further, decision-making “is not just an act of decision-making between a given set of 

parameters, but it is also about the continuous act of shaping and designing of organizations 

and their stakeholders’ experiences” (Avital et al., 2009, p. 154).   
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Big data can be characterized in terms of  seven Vs,  comprising of volume, variety, velocity, 

veracity, value, variability, and visualization, which present various challenges in data 

management (Mikalef et al., 2017; Seddon and Currie 2017; Gandomi and Haider, 2015). There 

are two key processes for extracting insights from big data: data management and big data 

analytics (BDA) (Gandomi and Haider, 2015). Data management refers to the processes and 

technologies required to collect, store, and prepare data for analysis, while BDA refers to the 

entire process of managing, processing, and analyzing the data characteristics (e.g., Vs) to 

create actionable insights to deliver sustained business value, measure performance and 

achieve competitive advantage (Fosso Wamba et al., 2015; Watson, 2014). BDA can be 

categorized into three types (e.g., descriptive analytics, predictive analytics, and prescriptive 

analytics), which have implications for the technologies and architectures used for BDA 

(Watson, 2014). Developing ‘big data analytics capabilities’ is an emerging technological 

capability to effectively deploy an organizations’ data, technology and talent through firm‐

wide processes, roles and structures (Mikalef et al., 2019).  

 

To date, research has largely focused on the technical aspects of big data (Mikalef et al., 2017) 

and its application in specific contexts (e.g., marketing, healthcare, smart cities, supply chains), 

but with limited attention given to the underlying process (Grover and Kar, 2017). This 

knowledge deficit is concerning as it is critically important to understand the processes required 

to leverage big data and create business value through data-driven decisions (Mikalef et al., 

2017). Further, processes are important because they enable organizations to standardize 

employee work activities, enhance their process execution, as well as benefit from process 

standardization (Rosemann and vom Brocke, 2015; Schaefer et al., 2013). This is particularly 

important for novice users (e.g., students, graduates) who may have limited knowledge or 

expertise about an organisational process and therefor require support in their process 

execution (Morano et al., 2020).  

 

The context of this study is the credit networks banks and organizations in India. We apply 

social network analysis whereby social phenomena are represented and studied by data on 

overlapping dyads as the units of observation (Brandes et al., 2013). Social network analyzes 

consists of a series of mathematical techniques that, using network and graph theories, can be 

used to understand the structure and the dynamics of complex networks (Pallavicini et al., 

2017). A complex network is a system for which it is difficult to reduce the number of 

parameters without losing its essential global functional properties (Costa et al., 2007). 
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Numerous tools have been developed to fulfil the task of analyzing and describing complex 

social networks (Kim and Hashtak, 2018; Valeri and Baggio, 2021).  

 

Social network analysis has been used to in a range of contexts including disaster management 

(Kim and Hashtak, 2018), tourism management (Valeri and Baggio, 2020), conspiracy thoeries 

abouve Covid-19 and 5G (Ahmed et al., 2020), disease ecology (Albery et al., 2021), migration 

and transnationalism (Bilecen et al., 2018), and online collaborative learning (Saqr et al., 2018). 

Despite the large body of literature addressing the topic of social network analysis, there is a 

noticeable absence of process frameworks that can guide novice researchers and practitioners. 

 

We address this gap in knowledge by proposing a design-based process framework to guide 

novice and experienced researchers and practitioners in the use of big data. We ground our 

framework on two streams of literature, namely social network analysis and design science 

research (DSR). In our research project we follow the design science research (DSR) approach 

and address the following research aim:  

To design a process framework for the effective application of social network analysis in big 

data research projects.  

Design science research (DSR) is a problem-solving paradigm that seeks to ‘design and 

evaluate’ innovative artifacts (e.g., concepts, models, methods, and instantiations) with the 

desire to improve an environment, by introducing the artifact and associated processes for 

creating it (Holmström et al., 2009; March and Smith, 1995; Hevner et al., 2004). While several 

process models have been proposed for DSR projects (e.g., Nunamaker et 1991; Walls et al., 

1992; Hevner, 2007; Kuchler and Vaishnavi, 2008) we adopt the model proposed by Peffers et 

al., (2007) as it is the mostly widely cited DSR model (vom Brocke et al., 2020) and although 

it is presented in a nominally sequential order, it is iterative in practice (Peffers et al., 2007). 

 

DSR is about understanding and improving the search among potential components to 

construct an artifact that is intended to solve a real-world problem (Baskerville, 2008). 

Essentially, DSR  addresses ‘wicked problems’, or using Simon’s  (1973) terminology,  ‘ill-

structured’ (Brooks Jr, 1987; Rittel and Webber, 1974), which are “decision situations where 

decision-makers  may not know or agree on the goals of the decision, and even if the goals are 
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known, the means by which these goals are achieved are not known and requisite solution 

designs to solve the problem may not even exist” (Holmström et al., 2009, p. 67).  

 
The remainder of this chapter is structured as follows. First, a synthesis of key literature related 

to social network analysis and the principles and structure of complex networks is presented. 

Next, justification for adopting a design science research methodology is provided. Then, a rich 

context of the financial credit networks of Indian banks and organizations is provided. Followed 

by a discussion about the proposed process framework and implications for research and 

practice. The chapter ends with a conclusion. 

 

2. Review of Social Network Theory 
 
A social network is a collection of actors (nodes)  that include people and organizations linked 

by a collection of social relations (Laumann et al., 1978). It is widely employed in the social 

sciences, behavioral sciences, political science, economics, organizational science and  

industrial engineering (Garton et al., 1999). The fundamental components of a social network 

study are the actor (node) and the connection (link)  The nodes can be individuals, corporates 

or groups and other social units and the nodes are linked to each other by ties (Wasserman and 

Faust, 1994). As a geographical map describes the landscape, networks offer a tantalizing tool 

to model the complex systems existing in real world. Network theoretic modelling and 

visualization helps in managing and apprehending the enormity of complex systems. Networks 

help in understanding the basic patterns of interactions within the components and thus aid in 

understanding the complexity in real-world systems (Boccaletti et al., 2006). For instance, 

banking systems of several countries including India, Peru, Italy, Mexico, and US have 

captured accurate repositories of their interbank network for systemic risk analysis (Bargigli et 

al., 2015; Cuba et al., 2021; Gupta and Kumar 2021; Soramaki et al., 2007). In these networks 

(generally referred as complex networks), the connection patterns between the nodes are neither 

purely regular nor random – they are complex (Fortunato, 2010; Soramaki et al., 2007). The 

goal of modelling and analyzing complex networks is to reproduce the observed collective 

behavior in the real world by simplifying the rules of interaction between the components 

constrained in the network.  
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2.1 Properties and structure of complex networks 

Complex networks and their implications on dynamical processes forms a broad area of study. 

Some of the most important research areas in complex networks are related to models of 

networks, structural properties of networks, module discovery in networks, motif discovery in 

networks, link prediction in networks and visual representation of networks. The properties 

that characterize the structural aspects of complex networks are presence of giant component, 

small world effect, scale-freeness, high clustering coefficient and presence of modular structure 

which are discussed next. 

 

Presence of Giant Component: The real world complex networks either contain a giant 

component or they are fully connected (Barabási, 2014). Giant component containing a finite 

fraction of all the nodes emerges if the average degree represented by < 𝑑 > is greater than 1 

(Barabási, 2014). However, all the nodes of a network are absorbed by the giant component if 

average degree < 𝑑 > is greater than 𝑙𝑛|𝑁| where |𝑁| is the number of nodes in a network 

(Barabási, 2014). Though many real world networks such as the internet and power grid do not 

satisfy the criteria of being fully connected (Barabási, 2014; Pagani and Aiello, 2013), the 

social network of humans in the world with a population of around 7.5 billion satisfies the 

criteria of being fully connected as average degree < 𝑑 > ≈ 1,000 is greater than 

𝑙𝑛(7.5 × 10!) ≈ 22.73 (Barabási, 2014). 

 

Presence of Small World Effect: Complex networks are characterized by the small world 

phenomenon implying that any two randomly selected nodes in a network are connected within 

short distances or hops (Watts and Strogatz, 1998). In practical terms, small world effect has 

been manifested as “six degrees of separation” meaning that between any two individuals even 

on the opposite side of the globe there exists a path of at most six acquaintances (Travers and 

Milgram, 1969). Considering a network with average degree < 𝑑 > and |𝑁| number of nodes, 

small world effect can be explained by the following calculation. Any node in this network is 

on an average connected to: 

< 𝑑 > nodes within 1 hop. 

< 𝑑 >" nodes within 2 hops. 

< 𝑑 ># nodes within 3 hops. 

…. 

< 𝑑 >$ nodes within ℎ hops. 
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Precisely, the expected number of nodes up to distance ℎ from starting node can be formulated 

as: 

𝐸(ℎ) ≈ 1+	< 𝑑 > +< 𝑑 >"+< 𝑑 >#+⋯+< 𝑑 >$	= 	
< 𝑑 >$%&− 1
< 𝑑 > −1 		≈	< 𝑑 >$ 							 (2.1) 

 

Assuming that the maximum number of hops or diameter of the network is ℎ'() and given 

that the total number of nodes in the network is |𝑁|, it can be mathematically expressed as: 

 

𝐸(ℎ'()) ≈ 	 |𝑁|																																																															(2.2)     

< 𝑑 >$!"#≈	 |𝑁|																																																															(2.3) 

	ℎ'() ≈	
𝑙𝑛	|𝑁|

𝑙𝑛	 < 𝑑 >																																																										(2.4) 

 

Thus, equation 2.4 represents the mathematical formulation of small world effect and also 

offers a good approximation for average path length < ℎ > between any two nodes in complex 

network (Barabási, 2014). Since 𝑙𝑛	|𝑁| ≪ |𝑁|, the dependence of diameter (ℎ'()) or average 

path length (< ℎ >) on 𝑙𝑛	|𝑁| implies that distances in real networks are much smaller than 

size of system. Moreover, the denominator 𝑙𝑛	 < 𝑑 > implies that denser the network, smaller 

the average distance between the nodes of network. 

 

Scale Free Property of Complex Networks: The degree distribution of nodes in random 

networks is Poisson such that degree of each node is typically given by	𝑑	 ≈	< 𝑑 > (Barabási 

and Albert, 1999). See Figure 1(a) that illustrates the poisson degree distribution in random 

networks. On the contrary, complex networks have a statistically significant probability of each 

node having a much higher degree than the average degree < 𝑑 > (Barabási and Albert, 1999). 

Therefore, complex networks are free of a characteristic scale and called scale-free networks 

(ibid). The degree distribution of nodes in these networks is given by power-law: 

𝑃	(𝑑) ≈ 	𝑑*+																																																																	(2.5) 

 

where the value of 𝛾 approximately lies between 2 and 3 which implies that there are few hubs 

in a network that are highly connected and dominate the topology of the network (Dorogovtsev 

and Mendes, 2002). See Figure 1(b) that illustrates the power law degree distribution in 

complex networks. Power law degree distribution has been observed in several real-world 

networks such as internet, world-wide-web, international trade networks and citation networks 
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(Rosvall, 2006). In a non-network context power law has been observed in the rank of word 

frequencies, size of cities and distribution of incomes (Zipf, 1949). 

 

Clustering Coefficient: Measures the extent to which nodes in a network tend to cluster together 

(Boccaletti et al., 2006). Intuitively, clustering coefficient represents the probability that two 

connections of a person relate to each other in a social network. It has two versions: first based 

on global aspect of clustering in the network and second based on local (node-wise) indication 

of clustering (Boccaletti et al., 2006).  

 

 
 

Figure 1 (a) Poisson Degree Distribution in           (b) Power Law Degree Distribution in  

 Random Networks                          Complex Networks 

 

The global clustering coefficient is the measure of probability that two adjacent neighbors of a 

node are also adjacent to each another (Newman, 2003). This relation leads to formation of 

triangles within the network. Thus, more the number of triangles within a network, higher the 

clustering coefficient. Mathematically, it can be represented as: 

𝐺𝐶 = 3
𝑁∆
𝑁⋀
																																																																										(2.6) 

 

where 𝑁∆ denotes the number of triangles wherein each of the three nodes is connected to 

remaining two nodes. 𝑁⋀ denotes the number of connected triplets wherein atleast one node is 

connected to other two. The multiplication factor of three indicates that each triangle forms 

three connected triplets and value of 𝐺𝐶 lies between 0 to 1 (Newman, 2003). 

 

Unlike 𝐺𝐶 which is dependent on the global properties of the network, local clustering 

coefficient 𝐿𝐶. of a node 𝑛. is given by the ratio of links existing between the nodes in the 
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adjacent neighborhood of 𝑛. 	divided by the number of possible links between them (Watts and 

Strogatz, 1998). Mathematically, this notion can be formulated as: 

 

𝐿𝐶. = 2
D{𝑙34: 𝑛3 , 𝑛4 ∈ 	𝑁. , 𝑙34 ∈ 𝐿}D

𝑑.(𝑑. − 1)
																																																			(2.7) 

 

where 𝑁(𝑛.) denotes the neighborhood subset of node 𝑛. and 𝑑. is the degree of node 𝑛.. The 

local clustering coefficient 𝐿𝐶 is then determined by taking the average of local clustering 

coefficients of all the nodes in a network, as given by following formula: 

𝐿𝐶 = 	
1
|𝑁|I𝐿𝐶.

|6|

.7&

																																																																	(2.8) 

 

Though, there are several other measures to reveal the structure of real-world networks, a 

network can be considered as complex if number links present in the network is much less than 

the total possible number of links within it. The average node degree is greater than one and 

power law exponent is greater than two (Barabási, 2014). Moreover, the clustering coefficient 

of the complex network should be much higher than that of the corresponding random network 

and average path length should be reasonably close to that of the corresponding random 

network (Albert and Barabási, 2002).  

 

Modular Structure: A high clustering coefficient gives an indication about the network 

topology and presence of clusters of nodes in a network. These clusters of nodes have been 

referred to as cohesive subgroups, modules, complexes, depending on the context and research 

discipline. In today’s digital world wherein, networks are increasingly being mapped, modules 

can be viewed as groups of humans, places, banks, photos, events, web pages or any other real 

world entity. In unipartite social networks clustering of nodes has been studied theoretically as 

homophily, one of the underlying tenets of social network theory (McPherson, Smith-Lovin, 

and Cook, 2001). Homophily is the tendency of individuals to mingle with other individuals of 

their own kind. This tendency may be induced by preference such as gender and ethnicity or 

by constraints such as organization and educational standards. 
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“Modularity” is a network level measure to determine the degree of homophily or goodness of 

modular structure in a complex network (Newman, 2006). Mathematically, modularity can be 

expressed by the following formula (Clauset, Newman, and Moore, 2004): 

 

𝑄 =
1
2|𝐿|IL𝐴89 −

𝑑8𝑑9
2|𝐿| N

89

𝛿(𝐶8 , 𝐶9)																																									(2.9) 

 

where |𝐿| is the total number of edges in a network, 𝑑8 is the degree of the node 𝑛8 and 𝑑9 is 

the degree of node 𝑛9. 𝐴89 is the adjacency matrix in which 𝛿(𝐶8 , 𝐶9) = 1	 if 𝑛8 and 𝑛9 are 

in same module and 0 otherwise. 

 

2.2.2 Modules in unipartite and bipartite networks 

Modelling real-world complex networks wherein data is interweaved in the form of nodes and 

links is one of the main research goals of big data analytics (Chang 2018; Hu and Zhang, 2017). 

Graph theory, one of the most cited theories in business and information systems offers 

conceptual guidance to model and analyze the interactions in complex networks (Houy et al., 

2016). A network consisting of a set of nodes and a set of links that join pairs of nodes is said 

to be unipartite or one-mode network. On the other hand, when a network consists of two 

different sets of nodes and a set of links where each link joins nodes in different sets, the 

network is referred to as bipartite or two-mode network (Gupta and Kumar, 2016; Huang and 

Gao, 2014).  

 

Previously, researchers have made persistent efforts to investigate and infer modular patterns 

in complex networks. In the context of social networks modules have been studied theoretically 

as homophily, one of the underlying tenets of social network theory (McPherson et al., 2001). 

Homophily is the tendency of individuals to mingle with other individuals of their own kind. 

This tendency may be induced by preference such as gender and ethnicity or by constraints 

such as private or public organization (Borgatti and Foster, 2003). For example, two banks may 

belong to the same group if they belong to same (private or public) sector. In bipartite networks, 

the intuition behind modules can be developed by considering a set of nodes as banks in a 

banking system and another set of nodes as the firms where a bank-firm link exists if the firm 

has borrowed from a bank. Two banks are similar in terms of their credit relationships if they 

have provided loans to same firms (Gupta and Kumar 2021). Similarly in an event-participant 
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bipartite network, individuals who participate in similar events are more likely to be associated 

with each other (Davis et al., 2009). Thus, common neighborhoods on one side of the bipartite 

network reflects the nodes belonging to a same cohesive subgroup on the other side and vice-

versa. Previously, identification of modules in bipartite networks have been used for various 

applications such as mapping ontologies (Fonseca, 2003) and analyzing users and content in 

social media (Grujic et al., 2009). Moreover, investigation of cohesive subgroups in complex 

networks has multifarious applications such as modelling of contagion (Agarwal et al., 2012), 

marketing and product development (Landherr et al., 2010). 

 
3. Methodology 

3.1 Background to DSR 

 
DSR is rooted in the seminal literature of  Herbert Simon’s semi ‘The Sciences of the Artificial’ 

(Simon, 1969). Interest in DSR has been growing across disciplines, notably engineering, 

computer science, and information systems (Baskerville, 2008). DSR is a ‘paradigm’ (Iivari, 

2007) grounded in ‘discovery-through-design’ (Baskerville, 2008). DSR is “a lens or set of 

synthetic and analytical techniques and perspectives (complementing positivist, interpretive, 

and critical perspective) for performing research (Vaishnavi and Kuechler, 2004, p.1). DSR is 

about understanding and improving the search among potential components to construct 

an ‘artifact’ that is intended to solve a ‘real world’ problem (Baskerville, 2008). In this context, 

an artifact is broadly defined as constructs (e.g., the conceptual vocabulary and symbols of a 

domain), models (e.g., propositions or statements expressing relationships between constructs), 

methods (e.g., algorithms or a set of steps used to perform a task: how-to knowledge), and 

instantiations (e.g., the operationalisation of constructs, models, and methods) (Vaishnavi and 

Kuechler, 2004; March and Smith, 1995; Hevner et al., 2004).  

 

In contrast to design practice (routine design), a ‘knowledge using activity’ (e.g., the 

application of existing knowledge to organisational problems), DSR is a ‘knowledge producing 

activity’ that addresses important unsolved problems in unique or innovative ways or solved 

problems in more effective ways (March and Smith,1995; Hevner et al., 2004). Although the 

iterations between design (development) and evaluate (experiment) is a significant difference 

between DSR and the theory-driven ‘behavioural science’ (Kuechler and Vaishnavi, 2008), 

both approaches share a common environment (e.g., people, organisations, and technology) 

(Silver et al., 1995). A paradigm difference between design science and behavioral science is 

bookmark://_ENREF_31/
bookmark://_ENREF_31/
bookmark://_ENREF_3/
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that the former is ‘problem understanding’ while the latter in ‘problem understanding’ 

(Niehaves and Stahl, 2006). As mentioned previously, we adopt the DSR model proposed by 

Peffers et al., (2007) which is explained in the next section.  

 
3.2 Process model adopted in this DSR project 

 
We adopt the six-step process model (see Table 1) proposed by Peffers et al., (2007) as it is the 

mostly widely cited model (vom Brocke et al., 2020) and although it is presented in a nominally 

sequential order, it is iterative in practice. In addition, there are four possible entry points for 

research, namely, (i) problem-centered approach (i.e., if the research idea resulted from 

observation of the problem or from suggested future research in a paper from a prior project), 

(ii) objective-centered approach (i.e., by-product of consulting experiences whereby client 

expectations were not met), (iii) design and development-centered approach (i.e., existence of 

an artifact that has not yet been formally thought through as a solution for the explicit problem 

domain in which it will be used), and (iv) observing a solution (i.e., observing a practical 

solution that worked and the researchers working backwards to apply rigor to the process 

retroactively). The entry point for this research is the design and development-centered 

approach. 

 
Table 1. A six-step process for design science research  
  

# Step Description (Peffers et al., 2007) 
1 Problem 

identification and 
motivation 

Define the specific research problem and justify the value of a solution. 
Justifying the value of a solution is important as it (i) motivates the 
researcher and the audience of the research to pursue the solution and 
to accept the results and (ii) helps to understand the reasoning 
associated with the researcher’s understanding of the problem.  

2 Define the objectives 
for a solution 

Infer the objectives of a solution from the problem definition and 
knowledge of what is feasible. The objectives can be quantitative (e.g., 
terms in which a desirable solution would be better than existing ones) 
or qualitative (e.g., a description of how a new artifact is expected to 
support solutions to problems not hitherto addressed). 

3 Design and 
development 

Create the actual artifact by determining its functionality and 
architecture. In DSR, an artifact can include constructs, models, 
methods, or instantiations. 

4 Demonstration Demonstrate the utility of the artifact to solve the problem. This could 
involve its use in experimentation, simulation, a case study, proof, or 
other ap- propriate activity.  

5 Evaluation Observe and measure how well the artifact supports a solution to the 
problem. At the end of this activity the researchers can decide whether 
to iterate back to step 3 to try to improve the effectiveness of the artifact 
or to continue to communication and leave further improvement to 
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subsequent projects. The nature of the research venue may dictate 
whether such iteration is feasible or not. 

6 Communication Communicate the problem and its importance, the artifact, its utility 
and novelty, the rigor of its design, and its effectiveness to researchers 
and other relevant audiences (e.g., practitioners). 

 
In this context of this study, we describe how each step as per the Peffer’s et al., (2004) model 

aligns the theoretical elements of social network analysis. 

 

Problem identification and motivation: We address the problem of how to discover patterns of 

interaction in a social network based on big data. According to Polites and Watson (2009), 

common objectives of a social network analysis include: 

• Information flow analysis – to determine the direction and strength of information flows 

through the network, such as information that is passed from one actor to other actors 

within the network.  

• Evaluation of actor prominence - determines the most influential actors within a 

network. 

• Hierarchical clustering – used to identify cliques whose members are fully or almost 

fully connected such as groups of actors that highly communicate with each other. 

• Block modeling and – aims at discovering the key links between different subgroups in 

the network such as actors that serve as information brokers across groups or subgroups. 

• Calculation of structural equivalence measures – aims at discovering network members 

with similar characteristics such as actors that correlate thus can be considered 

alternatives for each other. 

Design and development: The design of a solution involves creating an artifact.  According to 

March (1995), constructs, models, methods, and instantiations are considered as the main 

artifactual types. Constructs refers to the “language” developed to capture the problem and its 

conceptual solution. Models use this language to represent problems and solutions. Methods 

describe processes which provide guidance on how to solve problems. Instantiations are 

problem specific aggregates of constructs, models, and methods. At this stage, an artifacts 

desired functionality and its architecture is determined as a prelude to the creation of the 

artifact.  The resources required for moving from the objectives of a solution to the design of a 

solution includes the knowledge of theory that links the objectives to the solution (Peffers et 

al., 2006). In social network analysis, the design of a solution is governed by social network 
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theory. The key network concepts that organize research on network effects are centrality, 

cohesion, and structural equivalence (Liu et., 2017).  

Demonstration: During the demonstration phase, the effectiveness of the artifact to solve one 

or more instances of the problem is illustrated through experimentation, simulation, proof of 

concept or through other accepted means. The illustration of the efficacy of a solution can also 

be in the form of a  case study using a prototype (Fisher, 2007; Geerts and Wang, 2007). The 

knowledge base required at the demonstration stage is that of how to use the artifact to solve 

the identified instance of the problem (Fisher, 2007). 

 

Evaluation: The evaluation phase measures how well the artifact supports a solution to the 

problem. It involves comparing the observed results from the use of the artifact during 

demonstration to the objectives of the solution. During the evaluation phase, the utility, quality 

and efficacy of a design artifact should be demonstrated by executing evaluation metrics 

(Arnott and Pervan, 2012). The metrics are useful in establishing the performance of the new 

artifact. Metrics for evaluation may be based on the artifact’s functionality, quantitative 

performance measures, satisfaction surveys, clients’ feedback, and simulations. In social 

network analysis, evaluation metrics include contingency heuristics.  

 

Communication: This phase entails communicating the problem and its importance, the 

artifact, its utility, novelty, and the rigor of its design. The communication is aimed at showing 

the effectiveness of the artifact to researchers as well as technology-oriented and management-

oriented audiences. Effective communication of design artifacts requires the knowledge of the 

disciplinary culture. In this phase, we underscore how the artifact developed in this study can 

be applied by novice users (e.g., students, practitioners) to identify cohesiveness amongst 

actors in a social network, for example, credit relationships amongst banks and firms.  

 
4. Case Study: Credit Networks amongst Indian Companies and Banks  
 
In financial systems, interactions arising due to credit relationships could potentially lead to 

systemic risk (Gupta and Kumar, 2021). These systems can be modelled as bipartite networks 

consisting of two heterogeneous interacting agents (nodes) connected by credit relationships 

(links), as in bank-firm credit network. The analysis of real credit networks reveals that these 

networks have the characteristics of complex social networks i.e., high clustering coefficient, 

power-law degree distribution, and modular structure (De Masi et al., 2011). Once a bankruptcy 
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occurs at a particular node in the network, it may promulgate wider in the network, leading to 

systemic consequences (Gupta and Kumar, 2021). For instance, several business houses in the 

hospitality, aviation, energy sector and fitness center such as Virgin Atlantic, Gold’s Gym, 

Avianca, CMX Cinemas and Apex Parks went bankrupt during the COVID-19 pandemic 

following a forecast of 35 % increase in global insolvency index by Euler Hermes (a credit 

insurance company) during the June’ 2020- June’2022 period1. Similarly, the 2008 global 

financial crisis leading to the insolvency of investment banks such as Lehmann Brothers, 

Merrill Lynch, and Bear Stearns exposed the entwined nature of financial systems. Another 

insolvency proceeding was initiated in 2020 owing to Reliance Capital’s default of INR 1417 

crore to Yes Bank, a private sector bank in India. This resulted in several other Indian banks 

such as State Bank of India, HDFC bank, ICICI bank, Axis bank, and Kotak Mahindra bank 

investing several crores in the bank while acquiring stakes in the bank. The effect of Yes Bank’s 

collapse had a contagion effect across the country with stock market indices falling sharply and 

growth in credit rates. Several similar bankruptcies have occurred in the past in different parts 

of the world including impairment of Japan’s banking system in 1992 and Greek bank in 2010 

and the effect of these bankruptcies has imbued throughout the respective country or even to 

other countries. Due to these disastrous incidents, policymakers and governments have put in 

immense effort to unravel the hidden risks in complex financial systems. These credit 

relationships between banks and firms garner interest margin as profit for banks and fuel 

business growth of firms. The multiple borrowing relationships hedge the companies against 

liquidation risk. On the other side, multiple lending relationships insure banks against a firm’s 

risk of failure. However, the propensity to form multiple or single relationships varies with 

internal and external conditions (De Masi et al., 2011). On the flip side, insolvencies whether 

be in banks or firms reduce the risk appetite of lenders and lead to an increase in lending rates. 

As the insolvencies can have contagious effect, detection of modules is an effective decision 

support system for credit risk assessment in a financial system. This case study uses the data 

from annual reports of 20 heavily indebted companies in India to map the credit bipartite 

network of these companies and their bankers. Subsequently, modules of banks are identified 

using the concepts discussed in review of social network analysis theory. 

 

4.1 Data Collection 
 

 
1 https://www.firstpost.com/india/insolvency-cases-have-gone-up-substantially-in-covid-hit-corporate-world-but-india-can-heave-a-sigh-of-
relief-10176331.html 
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The data on the credit relationships between companies and banks in India is not available in 

an organized form at a single source. Therefore, we collected the data manually from annual 

reports of Indian companies for the financial year 2020– 21. We first shortlisted the high debt 

non-financial companies from moneycontrol.com which is a more than two decades old 

financial portal in India. This shortlisting process resulted in 20 companies. The industry type, 

total debt, and number of bankers for each company are shown in Table 2.  

 

Table 2: Details of companies used in creation of credit network 

 Company Industry Type Debt No. of Bankers 
1 Reliance Conglomerate 1,97,403.00 17 
2 NTPC Power – Generation & Distribution 1,63,799.35 17 
3 Power Grid Corp Power – Generation & Distribution 1,45,415.99 8 
4 ONGC Oil Drilling and Exploration 77,065.12 1 
5 IOC Refineries 72,740.20 2 
6 JSW Steel Steel – Large 49,215.00 9 
7 Indiabulls Housing Housing Finance  34,136.17 28 
8 HPCL Refineries 33,003.40 9 
9 Adani Ports Infrastructure - General 31,570.43 18 
10 BPCL Refineries 31,314.82 9 
11 NHPC Power – Generation & Distribution 28,947.90 22 
12 SAIL Steel – Large 27,176.05 21 
13 Jindal Steel Steel 24,099.53 23 
14 Alok Industries Textiles 22,770.20 3 
15 CESC Power – Generation & Distribution 11,332.38 22 
16 Future Retail Retail 5,360.11 14 
17 IRB Infra Infrastructure - General 5,213.51 19 
18 NLC India Power - Generation & Distribution 13,365.62 5 
19 Oil India Oil Drilling and Exploration 15,398.83 4 
20 Can Fin Homes Housing Finance 5,552.62 1 

 
As companies have borrowed from multiple banks, there are 56 banks in the dataset. We create 

a bipartite network such that each bank is linked to the companies to which it loaned money 

(see Table 3). This resulted in 20 nodes of companies on one side of bipartite network 

connected to 56 banks on the other side. 

 
Table 3: Description of credit network 

Characteristics Value 
Number of companies 20 
Number of banks 56 
Number of links 252 
Average degree of companies 12.6 
Average degree of banks 4.5 

 

https://www.moneycontrol.com/stocks/sectors/power-generation-distribution.html
https://www.moneycontrol.com/stocks/sectors/oil-drilling-and-exploration.html
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4.2 Analysis and Results 
 
We applied the bipartite clustering approach to cluster the set of bank nodes in the bipartite 

credit network. The experimental results reveal six modules consisting of 4,9,13,6,14, and 10 

banks as shown in Table 4. It is interesting to observe that the non-Indian origin banks fall into 

module 1 and module 6 except for Karnataka bank and IDFC First bank.  

 
Table 4: Modules of banks in credit network 

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 
ANZ Bank Bank of 

India 
Canara Bank Axis Bank Bank of Baroda Bank of 

America 
Catholic 
Syrian Bank 

Union Bank 
of India 

Axis Finance 
Bank 

SBI Bank Punjab National 
Bank 

Barclays 
Bank 

Karnataka 
Bank 

Standard 
Chartered 
Bank 

Aditya Birla HDFC Bank India Overseas 
Bank 

DZ Bank 

Shinhan 
Bank 

ICICI Bank IDFC Bank IndusInd 
Bank 

Central Bank of 
India 

Germany 
Export-import 
bank 

 BNP Paribas Jammu & 
Kashmir 
Bank 

Federal Bank IDBI Bank Hamburg 
Commercial 
Bank 

 CitiBank Bank of 
Maharashtra 

PFCL Bank Indian Bank IDFC First 

 Deutsche EXIM  DBS Bank Mizuho Bank 
 Credit 

Agricole 
Punjab & 
Sind Bank 

 Cooperative Bank MUFG Bank 

 Hong Kong 
and Shanghai 

Kotak 
Mahindra 
Bank 

 UCO Bank JP Morgan 

  AU Small 
Finance 

 IIFCL Sumitomo 
Mitsui Bank 

  RBL Bank  Yes Bank   
  United 

Overseas 
Bank  

 IFCI  

  SBI Life 
Insurance 

 Union Bank  

    India Infra  
 

Most of the private sector banks are identified as module 2. Modules 3,4, and 5 are mainly 

composed of public sector banks. This modular organization clearly indicates the extent of 

interdependency among Indian banks arising due to lending to companies. Module 3 and 5 with 

13 and 14 banks each are the most critical modules for the Indian banking system and if a firm 
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defaults to any of the banks in these clusters, adverse effects will spread to 13 banks (module 

3) or 14 banks (module 5). 

5. Discussion, Implications and Limitations 

From the outset, the aim of this DSR project was “to design a process framework for the 

effective application of social network analysis to improve the outputs of big data research 

projects”. Drawing on contemporary literature, we frame contributions of this study.  A design 

science contribution must be ‘interesting’ to the research community (Gregor and Hevner, 

2013), as well as be valued and accepted by the research community through its publication 

(Viashnavi and Kuechler, 2004). By adopting a DSR approach, we ensure that this study 

produces an interesting framework that will be of value and accepted by both researchers and 

practitioners. Further, the utility (e.g., practical knowledge) of the proposed 

framework provides a ‘proof of value added’ (Davis, 2005). 

Gregor and Hevner (2013, p. 345) propose a knowledge contribution framework for DSR 

which consists of four quadrants, namely, Improvement (develop new solutions for known 

problems, and Invention (Invent new solutions for new problems), and Routine Design (Apply 

known solutions for known problems) which would rarely be accepted as a research 

contribution (Vaishnavi and Keuchler, 2004), and Exaptation (Extend known solutions to new 

problems (e.g., adopt solutions from other fields). For improvement, invention, and exaptation 

to be considered as a significant research contribution, “it must be judged as significant with 

respect to the current state of the knowledge in the research area and be considered interesting” 

(Vaishnavi and Keuchler, 2004, p. 17). We believe the contribution of the proposed framework 

falls under the ‘invention’ quadrant as it provides a new solution to a new problem. 

The proposed artifact also presents a theoretical contribution, as its construction is a special 

case of predictive theory that provides a prescription which when acted upon, causes an artifact 

of a certain kind to come into being (Gregor, 2006). The proposed process framework is an 

artifact aimed at actualizing the activities involved in social network analysis. Further, in an 

artefactual contribution, originality and novelty refer to the introduction of a particular artefact 

(Ågerfalk and Karlsson, 2021). The aim of validating the process framework using social 

network data of banks and firms within the Indian context provides evidence of  

‘satisficeability’ of the artefactual contribution (Simon, 1969). Since the entry point of this 

research was at the ‘design and development’ phase, a rich description of the design process 

leading to the creation of the artefact and its instantiation using a case study of the credit 
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networks of banks and firms in India provided empirical contribution. An empirical 

contribution captures data, measurements, observations, or descriptions regarding the artifact 

(Ågerfalk and Karlsson, 2021). 

We acknowledge two limitations of this study, which also offer directions for future research. 

First, the study is based on a single case of module discovery problem within an umbrella of 

social network analysis which by nature, limits generalizability (Yin, 2009). Second, the 

proposed framework has been developed based on the context of the social networks of credit 

networks of banks and firms in India, which is a highly regulated industry. Future research 

could test the applicability of framework in different contexts such as in non-regulated 

environments (e.g., tourism, education).  

 

The proposed process framework (see Figure 2) for conducting social network analysis using 

big data provides a clear formal structure in a form of predefined activities such that the 

underlying processes are mapped to the domain application and knowledge outputs. In 

accordance with the principles of DSR process model (Dresch et al., 2015; Peffers et al., 2006, 

2018; Gupta and Tiwari, 2021), the proposed framework first formally introduces the module 

discovery problem to impart familiarity with the importance and relevance of module discovery 

through real life examples. In the second step, an understanding of the various aspects of 

problem such as credit risk, insolvency, modularity in networks is provided. The third step 

deals with the explanation of the origin and scientific advances related to credit risk assessment 

and solution of module discovery problem. The fourth step puts forward multiple classes of 

problems associated with module discovery such as module discovery in unweighted and 

unipartite networks (Kumar, Gupta and Bhasker, 2017; Gupta and Deodhar, 2021), module 

discovery in weighted and unipartite networks (Gupta and Tiwari, 2021) module discovery in 

bipartite networks (Gupta and Kumar, 2021) are highlighted in this step. The fifth step brings 

forth the concepts related to binarization, transformation, and one mode projection for module 

discovery. The sixth step pertains to demonstration of the superior approach through its 

implementation and heuristic such as similarity involved herein. Once the working of solution 

is explained, in the seventh step, the concept of contingency heuristic (modularity) is discussed. 

Subsequently, the advantages of bipartite module discovery for credit risk assessment should 

be brought forward. Finally, how the similar approaches of bipartite modelling and module 

discovery could be used for other context and application domains should be highlighted. 
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Figure 2   Process framework for conducting social network analysis using big data

Credit risk assessment among banks

Literature review related to 
the problem Awareness of the problem

Identification of the solutions and configuration of the classes of 
problems

Proposition of artifacts to solve the credit risk assessment problem 

Design and development of the artifactual solution

Demonstrate the utility of the artifact

Evaluation of the artifact

Clarification and conclusion of learning achieved

Generalization for a class of problems

Communicate the problem, artifact, design principles, and results to 
relevant stakeholders

How to find cohesive subgroups of banks with respect to their credit 
relationships?

Understanding the context of credit risk assessment among banks, the 
knowledge bases of traditional disciplines (e.g., finance, economics) 
related to problem, and formalization of the aspects of the problem

Explaining existing solutions for credit risk assessment (e.g., NARM, LASER, 
DebtRank), organizing the development of knowledge in the field of 

community detection (e.g., disjoint and overlapping community detection) 

Explaining the existing solutions for credit risk assessment (e.g. NARM, 
LASER, DebtRank) and organizing the development of knowledge in the 

field of module discovery (e.g., unweighted, weighted and bipartite 
module discovery)

Explanation of procedures such as binarization and transformation that 
have been employed in the solutions

Illustration of working approaches and construction heuristic (similarity) 
derived from the solutions

Contingency heuristics (modularity) for evaluating the solution

Bipartite community detection solution performs better than unweighted 
and weighted community detection for credit risk assessment in banking 

networks. Highlight the advantages of using bipartite community 
detection and various applications of  bipartite network modelling

Generalization of construction heuristic (similarity) for module discovery in 
heterogeneous networks.
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6. Conclusion  
 
This chapter provided a brief overview of the value of big data analytics and social network 

analysis that requires mathematical and computational techniques that can be used to 

understand the dynamics of complex real-world and artificial networks. The chapter also 

highlighted the importance of understanding the processes required to leverage big data to 

create business value through data-driven decisions. The chapter then describes a process 

framework that to guide novice users to effectively apply social network analysis and improve 

the outputs of big data research projects. This chapter therefore provides some interesting 

insights and opportunities for research and practice of social network analysis. 
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